miércoles, 8 de julio de 2015

Geometria

Geometría se ocupa de relaciones espaciales, usando calidades fundamentales o axiomas. Tales axiomas se pueden utilizar conjuntamente con las definiciones matemáticas para los puntos, las líneas rectas, las curvas, las superficies, y los sólidos para dibujar conclusiones lógicas. Vea también Lista de los asuntos de la geometría
Incluye el estudio de objetos por ejemplo polytopes y poliedros. Vea también Lista de los asuntos de la convexidad
El estudio de objetos geométricos y características que son discreto o combinatorio, por su naturaleza o por su representación. Incluye el estudio de formas tales como Sólidos Platonic y la noción de tessellation.
El estudio de la geometría usando cálculo, y se relaciona muy de cerca con topología diferenciada. Cubre las áreas tales como Geometría de Riemannian, curvatura y geometría diferenciada de curvas. Vea también glosario de la geometría y de la topología diferenciadas.
A dada polinómico de dos verdaderos variables, entonces los puntos en un plano donde está forma esa función cero de la voluntad a la curva. curva algebraica amplía esta noción a los polinomios sobre a campo en un número dado de variables. La geometría algebraica se puede ver como el estudio de estas curvas. Vea también lista de los asuntos algebraicos de la geometría y lista de superficies algebraicas.
Se ocupa de las características de una figura que no cambian cuando la figura es deformada continuamente. Las áreas principales son topología determinada del punto (o topología general), topología algebraica, y la topología de múltiples, definido abajo.
También llamado topología determinada del punto. Características de espacios topológicos. Incluye las nociones tales como abierto y cerrado sistemas, espacios compactos, funciones continuas, convergencia, axiomas de la separación, espacios métricos, teoría de la dimensión. Vea también glosario de la topología general y lista de los asuntos generales de la topología.
Las características de objetos algebraicos se asociaron a un espacio topológico y cómo estos objetos algebraicos capturan las características de tales espacios. Contiene áreas como teoría de la homología, teoría del cohomology, teoría homotopy, y álgebra homological, algunos de ellos ejemplos de functors. Homotopy trata de grupos homotopy (incluyendo grupo fundamental) así como complejos simplicial y A LA DERECHA complejos (también llamado complejos de la célula). Vea también lista de los asuntos algebraicos de la topología.

Una variedad se puede imaginar como una generalización n-dimensional de una superficie tridimensional en un espacio euclídeo. El estudio de variedades incluye a la topología diferencial, que estudia las características de las funciones diferenciables definidas sobre una variedad. Véase también variedades complejas.

No hay comentarios:

Publicar un comentario